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Abstract

An approach for synthesizing buckling results and
behavior for thin balanced and unbalanced symmetric
laminates that are subjected to uniform axial compression
loads and elastically restrained against inplane expansion,
contraction, and shear deformation is presented.  This ap-
proach uses a nondimensional analysis for infinitely long,
flexurally anisotropic plates (coupling between bending
and twisting) that are subjected to combined mechanical
loads and is based on nondimensional parameters.  In ad-
dition, nondimensional loading parameters are derived
that account for the effects of the elastic inplane deforma-
tion restraints, membrane orthotropy, and membrane
anisotropy on the induced prebuckling stress state.  The
loading parameters are used to determine buckling coeffi-
cients that include the effects of flexural orthotropy and
flexural anisotropy.  Many results are presented, for some
selected laminates, that are intended to facilitate a struc-
tural designer’s transition to the use of the generic buck-
ling design curves that are presented and discussed in the
paper.  Several buckling response curves are presented
that provide physical insight into the behavior for com-
bined loads, in addition to providing useful design data.
An example is presented that demonstrates the use of the
generic design curves, which are applicable to a wide
range of laminate  constructions.  The analysis approach
and generic results indicate the effects and characteristics
of laminate orthotropy and anisotropy in a very general
and unifying manner.

Introduction 

Structural tailoring of laminated-composite plates to
enhance their buckling resistance is an important element
in the development of new, advanced aerospace vehicles.
One structural component that is often examined in design
of aircraft and spacecraft is the long rectangular plate.
Plates of this type commonly appear as elements of stiff-
ened panels that are used for wing structures, and as semi-
monocoque shell segments that are used for fuselage and
launch vehicle structures.  Thus, establishing a broad un-
derstanding of the buckling behavior of long plates is es-

sential to the advancement of structural-tailoring
technology for aerospace vehicles.

  An important type of long plate that appears as an
element of advanced composite structures is the symmet-
rically laminated plate.  In the present study, the term,
"symmetrically laminated," refers to plates in which ev-
ery lamina above the plate midplane has a corresponding
lamina located at the same distance below the plate mid-
plane, with the same thickness, material properties, and
fiber orientation.  Symmetrically laminated plates are,
for the most part, flat after the manufacturing process and
exhibit flat prebuckling deformation  states, which is de-
sirable for many applications.  More importantly, the
amenability of these plates to structural tailoring pro-
vides symmetrically laminated plates with a significant
potential for reducing the weight of aerospace vehicles or
for meeting special performance requirements.  Thus,
understanding the buckling behavior of symmetrically
laminated plates is an important part of the search for
ways to exploit plate orthotropy and anisotropy to reduce
structural weight or to fulfill a special design require-
ment.

In many practical cases, symmetrically laminated
plates exhibit specially orthotropic behavior.  However,
in many cases, these plates exhibit anisotropy in the form
of material-induced coupling between pure bending and
twisting deformations.  This coupling is referred to here-
in as flexural anisotropy and it generally yields buckling
modes that are skewed in appearance (see Fig. 1).   Sym-
metrically laminated plates that are unbalanced are also
being investigated for special-purpose uses in aerospace
structures. In the present study, the term, "unbalanced
laminate," refers to symmetric laminates in which each
ply with a positive-valued fiber orientation is not “bal-
anced” by a corresponding ply with a negative-valued fi-
ber orientation.  Unbalanced laminated plates exhibit
anisotropy in the form of material-induced coupling be-
tween pure inplane dilatation and inplane shear deforma-
tions, in addition to flexural anisotropy.  This coupling is
referred to herein as membrane anisotropy and it gener-
ally yields combined inplane stress states for simple
loadings like uniform edge compression when inplane
displacement constraints are imposed on one or more
edges of a plate.  For example, when the two unloaded,
opposite edges of an unbalanced, symmetrically laminat-
ed plate that is compression loaded, such as a [+45
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 laminate, are totally restrained against expansion
and contraction and inplane shearing deformations, in-
plane shear stresses are developed in addition to the bi-
axial compression stresses that are typically present in
balanced laminates (see Fig. 2). These kinematically in-
duced shear stresses can be relatively large in magnitude,
compared to the direct compressive stresses, and as a re-
sult can affect greatly the buckling behavior of the plate
and yield buckling modes that are skewed in appearance. 

The effects of flexural orthotropy and flexural
anisotropy on the buckling behavior of long rectangular
plates that are subjected to single and combined loading
conditions are becoming better understood.  For exam-
ple, in-depth parametric studies that show the effects of
flexural orthotropy and flexural anisotropy on the buck-
ling behavior of long plates that are subjected to com-
pression, shear, pure inplane bending, and various
combinations of these loads have been presented in Refs.
1 through 3.  The results presented in these references de-
tail the ways in which the importance of flexural anisot-
ropy, on the buckling resistance of long plates, varies
with the magnitude and type of the combined loading
condition.  Similar results for plates loaded by uniform
shear and a general linear distribution of axial load
across the plate width have also been presented in Ref. 4.  

Several studies have also addressed the behavior of
rectangular plates that are restrained against inplane
movement- an important research area because inplane
movement is typically restricted in aerospace structures
by adjacent panels and stiffeners. In particular, Harris
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examined the effects of lateral inplane restraint on the
behavior of compression-loaded, specially orthotropic
plates, and Obraztsov and Vasil’ev
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 examined the same
effects on compression-loaded, balanced angle-ply lam-
inates.  Sherbourne and Pandey
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 examined the behavior
of balanced and unbalanced, symmetric laminates sub-
jected to uniaxial compression loads and with either lat-
eral inplane movement restrained or both lateral
movement and inplane shear deformation restrained.
Their study highlights the effects of fiber orientation and
plate aspect ratio for selected laminate stacking sequenc-
es made of a typical graphite-epoxy material system, and
explored the possibility of tailoring laminates to have a
negative Poisson’s ratio, that results in improved buck-
ling resistance (Insight into how laminate stacking se-
quence affects Poisson’s ratio is found in Refs. 8-10.).
Similar studies that focus on buckling-load optimization
of compression-loaded rectangular laminates are pre-
sented in Refs. 11 and 12.  These two studies examine the
effects of unloaded edges that are either rigidly or elasti-
cally restrained agained inplane, lateral movement, and
include the effects of transverse-shear flexibility. Results
are presented for balanced, symmetric laminates made of

a typical graphite-epoxy material, for several plate aspect
ratios and five different boundary conditions. Bedair

 

13, 14

 

and Walker, et. al.

 

15

 

, have also presented studies that in-
clude the effects  of restrained inplane movement, along
with the presence of nonuniform applied compression
loads.  Specifically, the results in Refs. 13 and 14 focus
on the behavior of finite-length isotropic plates with elas-
tic inplane restraints.  The results presented in Ref. 15 fo-
cus on buckling-load optimization of rectangular,
graphite-epoxy laminates that are balanced and symmet-
ric.

Studies that address the effects of membrane
orthotropy and membrane anisotropy on the buckling be-
havior of long rectangular plates that are restrained
against axial thermal expansion or contraction and sub-
jected to uniform heating or cooling and mechanical
loads have been presented in Refs. 16 and 17.  Likewise,
similar results for plates that are either fully restrained or
elastically restrained against thermal expansion and con-
traction and subjected to uniform heating or cooling have
been presented in Refs. 18 and 19, respectively.   These
studies are comprehensive and have provided a better un-
derstanding of the load interaction effects of balanced
and unbalanced, symmetrically laminated plates that are
subjected to mechanical loads and restrained against
thermal expansion or contraction. 

As evidenced  by the previous studies discussed,
the effects of membrane orthotropy and anisotropy, flex-
ural orthotropy and anisotropy, and the restraint of in-
plane movement on the buckling behavior of rectangular
plates that are subjected to mechanical and thermal loads
are becoming better understood.  However, comprehen-
sive review of these studies indicates that there remains
a need for in-depth studies that address, in a broad way,
the effect of a compliant, elastic restraining medium on
the buckling of compression-loaded, symmetrically lam-
inated plates that are restrained against lateral expansion
and contraction and inplane shearing deformations.  This
research area is important because it represents a class of
problems that must be well understood in order to deter-
mine potential benefits and pitfalls of structural tailoring.
Thus, the objective of the present study is to present an
analytical approach that indicates the effects of a compli-
ant, elastic restraining medium on the buckling behavior
of compression-loaded, balanced and unbalanced, sym-
metrically laminated plates in a very general manner.
Towards that objective, a buckling analysis is presented
first that follows the analysis presented in Ref. 19.  To
achieve this objective, the buckling analysis is formulat-
ed in terms of nondimensional buckling coefficients and
load factors that depend on the inplane compliance coef-
ficients for a given plate and the relative compliance of a
restraining medium.  Results are then presented for infi-
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nitely long plates with the two long, unloaded edges
clamped or simply supported and elastically restrained
against inplane movement.  These results include nondi-
menional buckling loads for selected laminates that are
made from one of nine different material systems, and
generic results that are applicable to a vast range of lam-
inate constructions, including hybrid laminates.  Buck-
ling results for infinitely long plates are important
because they often provide a practical estimate of the be-
havior of finite-length rectangular plates (lower bounds
to festoon buckling curves), and they provide informa-
tion that is useful in explaining the behavior of these fi-
nite-length plates.  Moreover, knowledge of the behavior
of infinitely long plates can provide insight into the
buckling behavior of more complex structures such as
stiffened panels.   Finally, an example is presented that
illustrates the use of the generic buckling-design curves
presented herein and in Ref. 18, and highlights the ef-
fects of a restraining medium on the buckling behavior.

Analysis Description

In preparing generic design charts for buckling of a
single flat thin plate, a special-purpose analysis is often
preferred over a general-purpose analysis code, such as a
finite-element code, because of the cost and effort that is
usually involved in generating a large number of results
with a general-purpose code.  The results presented in the
present paper were obtained by using such a special-pur-
pose buckling analysis that is based on classical laminat-
ed-plate theory.  The analysis details are lengthy; hence,
only a brief description of the buckling analysis is pre-
sented herein.  First, the buckling analysis for long plates
that are subjected to a general set of mechanical loads is
described.  Then, the mechanical loads that are induced
in compression-loaded plates by elastically restraining
the inplane lateral and shear deformations are derived.

Buckling Analysis

Symmetrically laminated plates can have many dif-
ferent constructions because of the wide variety of mate-
rial systems, fiber orientations, and stacking sequences
that can be selected to construct a laminate.  A way of
coping with the large number of choices for laminate
constructions is to use convenient nondimensional pa-
rameters in order to understand overall behavioral trends
and sensitivities of the structural behavior to perturba-
tions in laminate construction.  The buckling analysis
used in the present paper is based on classical laminated-
plate theory and the classical Rayleigh-Ritz method, and
is derived explicitly in terms of the nondimensional pa-
rameters defined in Refs. 1-4 and 16-20.  This approach
was motivated by the need for generic (independent of a
specific laminate construction) parametric results for

composite-plate buckling behavior that are expressed in
terms of the minimum number of independent parame-
ters needed to fully characterize the behavior, and that in-
dicate the overall trends and sensitivity of the results to
changes in the parameters.  The nondimensional param-
eters that were used to formulate the buckling analysis
are given by

                       (1)

                        (2)

                         (3)

                        (4)

where  b  is the plate width and  

 

λ

 

  is the half-wave
length of the buckle pattern of an infinitely long plate
(see Fig. 1).  The subscripted  D-terms are the bending
stiffnesses of classical laminated-plate theory.  The
parameters  

 

α

 

∞

 

  and  

 

β

 

  characterize the flexural orthot-
ropy, and the parameters  

 

γ

 

  and  

 

δ

 

  characterize the flex-
ural anisotropy.

The mechanical loading conditions that are includ-
ed in the buckling analysis are uniform transverse ten-
sion or compression, uniform shear, and a general linear
distribution of axial load across the plate width, as de-
picted in Fig. 1.  Typically, an axial stress resultant dis-
tribution is partitioned into a uniform part and a pure
bending part.  However, this representation is not unique.
The longitudinal stress resultant N

 

x

 

 is partitioned in the
analysis into a uniform tension or compression part and
a linearly varying part that corresponds to eccentric in-
plane bending loads.  This partitioning is given by

               (5)

where N

 

xc

 

 denotes the intensity of the constant-valued
tension or compression part of the load, and the term
containing N

 

b

 

 defines the intensity of the eccentric
inplane bending load distribution.  The symbols 

 

ε

 

0

 

 and

 

ε

 

1

 

 define the distribution of the inplane bending load,
and the symbol 

 

η

 

 is the nondimensional coordinate
given by  

 

η

 

 = y/b.  This particular way of partitioning
the longitudinal stress resultant was used for conve-
nience by eliminating the need to calculate the uniform
and pure bending parts of an axial stress resultant distri-
bution prior to performing a buckling analysis.

The analysis is based on a general formulation that
includes combined destabilizing loads that are propor-

tional to a positive-valued loading parameter  that is
increased until buckling occurs, and independent subcrit-

  α∞ = b
λ

D11

D22

1/4

  β =
D12 + 2D66

(D11 D22)
1/2

  γ =
D16

(D11
3 D22)

1/4

  δ =
D26

(D11 D22
3 )

1/4

  Nx = Nxc – Nb[ε0 + (ε1 – ε0)η]

p
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ical combined loads that remain fixed at a specified load
level below the value of the buckling load.  Herein, the
term "subcritical load" is defined as any load that does
not cause buckling to occur.  In practice, the subcritical
loads are applied to a plate prior to, and independent of,
the destabilizing loads with an intensity below that which
will cause the plate to buckle.  Then, with the subcritical
loads fixed, the active, destabilizing loads are applied by
increasing the magnitude of the loading parameter until
buckling occurs.  This approach permits certain types of
combined-load interaction to be investigated in a direct
and convenient manner.  For example, in analyzing the
stability of an aircraft fuselage, the nondestabilizing
transverse tension load  in a fuselage panel that is caused
by cabin pressurization can be considered to remain con-
stant and, as a result, it can be represented as a passive,
subcritical load.  The combined shear, compression, and
inplane bending loads that are caused by flight maneu-
vers can vary and cause buckling and, as a result, they
can be represented as active, destabilizing loads.

The distinction between the active, destabilizing
and passive subcritical loading systems is implemented
in the buckling analysis by partitioning the prebuckling
stress resultants as follows

                         (6)

                          (7)

                          (8)

                             (9)

where the stress resultants with the subscript 1 are the
destabilizing loads, and those with the subscript 2 are
the subcritical loads.  The sign convention used herein
for positive values of these stress resultants is shown in
Fig. 1.  In particular, positive values of the general linear
edge stress distribution parameters  N

 

b1

 

, N

 

b2

 

, 

 

ε

 

0

 

, and 

 

ε

 

1

 

correspond to compression loads.  Negative values of
N

 

b1

 

 and  N

 

b2

 

, or negative values of either 

 

ε

 

0

 

 or 

 

ε

 

1

 

, yield
linearly varying stress distributions that include tension.
Depictions of a variety of inplane bending load distribu-
tions are given in Ref. 4.  The two normal-stress result-
ants of the system of destabilizing loads,  and  N

 

y1

 

,
are defined to be positive-valued for compression loads.
This convention results in positive eigenvalues being
used to indicate instability due to uniform compression
loads.

The buckling analysis includes several nondimen-
sional stress resultants associated with Eqs. (6) through
(9).  These dimensionless stress resultants are given by

                          (10)

                                     (11)

                         (12)

                          (13)

where the subscript  j  takes on the values of 1 and 2.  In
addition, the destabilizing loads are expressed in terms

of the loading parameter  in the analysis by

                               (14)

                               (15)

                              (16)

                               (17)

where  L

 

1

 

  through  L

 

4

 

  are load factors that determine

the specific form (relative contributions of the load com-
ponents) of a given system of destabilizing loads.  Typi-
cally, the dominant load factor is assigned a value of 1
and all others are given as positive or negative fractions.

Nondimensional buckling coefficients that are used
herein are given by the values of the dimensionless stress
resultants of the system of destabilizing loads at the onset
of buckling; i.e.,

       (18)

            (19)

      (20)

       (21)

where the quantities enclosed in the parentheses with
the subscript “cr” are critical values that correspond to

buckling and  is the magnitude of the loading param-
eter at buckling.  Positive values of the coefficients K

 

x

 

and K

 

y

 

 correspond to uniform compression loads, and
the coefficient K

 

s

 

 corresponds to uniform positive shear.
The direction of a positive shear-stress resultant that acts
on a plate is shown in Fig. 1.  The coefficient K

 

b

 

 corre-
sponds to the specific inplane bending load distribution
defined by the selected values of the parameters  

 

ε

 

0

 

  and

 

ε

 

1

 

 (see Fig. 1).

 Nxc = – Nx1
c + Nx2

c

 Ny = – Ny1 + Ny2

 Nxy = Nxy1 + Nxy2

 Nb = Nb1 + Nb2

 Nx1
c

  
nxj

c =
Nxj

c b2

π2(D11 D22)
1/2

  
nyj =

Nyj b2

π2 D22

  
nxyj =

Nxyj b2

π2(D11 D22
3 )

1/4

  
nbj =

Nbj b2

π2(D11 D22)
1/2

p

 nx1
c = L1 p

 ny1 = L2 p

 nxy1 = L3 p

 nb1 = L4 p

  
Kx ≡ nx1

c
cr

=
Nx1

c

cr
b2

π2(D11 D22)
1/2 = L1 pcr

  
Ky ≡ ny1 cr

=
Ny1 cr

b2

π2D22

= L2 pcr

  
Ks ≡ nxy1 cr

=
Nxy1 cr

b2

π2(D11 D22
3 )

1/4 = L3 pcr

  
Kb ≡ nb1 cr

=
Nb1 cr

b2

π2(D11 D22)
1/2 = L4 pcr

 pcr
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The mathematical expression used in the variation-
al analysis to represent the general off-center and skewed
buckle pattern is given by

       (22)

where   and  are nondimensional coor-

dinates,   is the out-of-plane displacement field, and

  and   are the unknown displacement ampli-
tudes.  In accordance with the Rayleigh-Ritz method,

the basis functions  are required to satisfy the
kinematic boundary conditions on the plate edges at  

 

η

 

 =
0  and  1.  For the simply supported plates, the basis
functions used in the analysis are given by

                       (23)

for values of  m = 1, 2, 3, ..., N.  Similarly, for the 
clamped plates, the basis functions are given by

          (24)

For both boundary conditions, the two long edges of a 
plate are free to move in-plane, unless noted otherwise.

Algebraic equations that govern the buckling be-
havior of infinitely long plates are obtained by substitut-
ing the series expansion for the buckling mode given by
Eq. (22) into a nondimensionalized form of the second
variation of the total potential energy and then comput-
ing the integrals appearing in the nondimensional second
variation in closed form.  The resulting equations consti-
tute a generalized eigenvalue problem that depends on

the aspect ratio of the buckle pattern  (see Fig. 1) and
the nondimensional parameters and nondimensional
stress resultants defined herein.  The smallest eigenvalue
of the problem corresponds to buckling and is found by

specifying a value of  and solving the corresponding
generalized eigenvalue problem for its smallest eigen-
value.  This process is repeated for successive values of

 until the overall smallest eigenvalue is found.
Results that were obtained from the analysis de-

scribed herein for uniform compression, uniform shear,
pure inplane bending (given by  

 

ε

 

0

 

 = -1  and  

 

ε

 

1

 

 = 1), and
various combinations of these mechanical loads have
been compared with other results for isotropic, orthotro-
pic, and anisotropic plates that were obtained by using
other analysis methods.  These comparisons are dis-
cussed in Refs. 1-3, and in every case the results de-
scribed herein were found to be in good agreement with
those obtained from other analyses.  Likewise, results

were obtained for isotropic and specially orthotropic
plates that are subjected to a general linear distribution of
axial load across the plate width and compared with re-
sults that were obtained by seven different authors (see
Ref. 4).  In every case, the agreement was good.

Prebuckling Stress Resultants

In general, compression-loaded plates that are sym-
metrically laminated, but unbalanced, become subjected
to a combined inplane stress state when the lateral, in-
plane expansion and contraction and inplane shearing
deformations are restrained at the plate edges (see Fig.
2).  As the magnitude of the compression load increases,
the induced loads increase proportionally, which can
cause premature buckling, compared to the buckling re-
sistance of the corresponding unrestrained plate.  These
induced mechanical loads are determined in the present
study by using the inverted membrane constitutive equa-
tions that are based on classical laminated-plate theory;
that is, 

             (25a)

where 

 

ε

 

x

 

, 

 

ε

 

y

 

, and 

 

γ

 

xy

 

  are the prebuckling, inplane strains
and the subscripted a-terms are the plate membrane
compliance coefficients.  An alternate form of this equa-
tion (see Ref. 21, p. 79) that is also used in the present
study, that utilizes the overall laminate properties, is
given  by

   (25b)

where h is the laminate thickness, E

 

x

 

 and E

 

y

 

 are the lam-
inate moduli, G

 

xy

 

 is the laminate shear moduli, 

 

ν

 

xy

 

 and

 

ν

 

yx

 

 are the major and minor Poisson’s ratios, respec-
tively, 

 

η

 

x,xy

 

 and 

 

η

 

y,xy

 

 are the coefficients of mutual influ-
ence of the first kind, and 

 

η

 

xy,x

 

 and 

 

η

 

xy,y

 

 are the
coefficients of mutual influence of the second kind.
Relationships between the various constitutive terms are
obtained by noting that the coefficient matrix of Eq.
(25b) is symmetric.  Following Ref. 21, the coefficients
of mutual influence are referred to herein as shear-
extension coupling coefficients.

The effects of the elastic boundary restraints de-
picted in Fig. 2a are obtained by noting that the induced
stress resultants are proportional to the strains caused by

  wN(ξ,η) = (Amsinπξ+ Bmcosπξ)Φm(η)Σ
m = 1

N

  ξ = x/λ   η = y/b

 wN

 Am  Bm

  Φm(η)

  Φm(η) = sin mπη

  Φm(η) = cos(m–1)πη– cos(m+1)πη

  λ/b

  λ/b

  λ/b

  εx

εy

γxy

=
a11 a12 a16
a12 a22 a26
a16 a26 a66

Nx

Ny

Nxy

  

εx
εy
γxy

=

1
Ex

–
ν yx
Ey

η x,xy
Gxy

–
ν xy
Ex

1
Ey

η y,xy
Gxy

η xy,x
Ex

η xy,y
Ey

1
Gxy

Nx/h

Ny/h

Nxy/h
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expansions or contractions and shearing deformations of
the plate and the resistance provided by the restraining
medium.  Typically, the elastic resistance of the restrain-
ing medium is simulated with linear springs and ex-
pressed in terms of the corresponding spring stiffnesses.
In the present study, the elastic resistance of a homoge-
neous restraining medium is described approximately in
terms of two overall compliance coefficients of the re-
straining medium, denoted by C

 

2

 

 and C

 

3

 

.  In particular,
the action of the elastic restraining medium is represent-
ed in a simple manner by

   

 

ε

 

y

 

 = - C

 

2

 

 N

 

y

 

                             (26)

and

 

γ

 

xy

 

 = - C

 

3

 

 N

 

xy

 

                           (27)

for a uniform, positive-valued set of strains in a plate.
The negative sign in Eq. (26) indicates that a positive,
expansional strain in the y-direction is reacted by a com-
pressive stress in the y-direction, that corresponds to a
negative value for N

 

y

 

.  In other words, for a plate that is
free to deform under axial loading, a restraining medium
would require a compressive restoring force to suppress
the deformation.  Similarly, the negative sign in Eq. (27)
indicates that a positive shearing strain induces, or is
reacted by, a negative shearing-stress resultant.  In the
present study, the plates are presumed to be supported
and loaded such that nonuniformities in the prebuckling
stress field are negligible.

Expressions for the induced stress resultants are ob-
tained by substituting Eqs. (26) and (27) into Eq. (25a)
and then solving two of the resulting equations for  N

 

y

 

and  N

 

xy

 

  in terms of the applied stress resultant  N

 

x

 

.  This
step gives

           (28)

and

       (29)

To simplify these two equations further and to provide a
simple way to estimate the influence of a restraining
medium, the compliance coefficients of the restraining
medium are defined as relative proportions of the plate
compliance coefficients; that  is,

C

 

2

 

 = R

 

2

 

a

 

22

 

                               (30)
and

C

 

3

 

 = R

 

3

 

a

 

66

 

                               (31)

Because of these definitions, R

 

2

 

  and  R

 

3

 

  are referred to
herein as compliance ratios.  By using Eqs. (30) and
(31), Eqs. (28) and (29) become

        (32)

and

       (33)

Next, because all the subcritical loads used in the buck-
ling analysis are zero-valued for this problem, N

 

x

 

 = -

, N

 

y

 

 = -N

 

y1

 

, and N

 

xy

 

 = N

 

xy1

 

 (see Figs. 1 and 2).  This
substitution yields 

        (34)

and

    (35)

Equations similar to equations (34) and (35), that
express the induced stress resultants in terms of the
overall laminate material properties, are obtained by
substituting Eqs. (26), (27), (30), and (31) into Eq. (25b)
and then solving two of the resulting equations for  N

 

y

 

and  N

 

xy

 

  in terms of the applied stress resultant  N

 

x

 

.
This procedure gives

     (36)

and

    (37)

Although the focus of the present study in on compres-

sion loaded plates ( ), Eqs. (34) through (37)
clearly indicate that buckling can occur under axial ten-
sion loads for some laminate constructions.

Equations (34) through (37) contain three special
cases of interest.  First, when a plate is rigidly restrained
such that  

 

ε

 

y

 

 = 

 

γ

 

xy

 

 = 0, the compliance ratios  R

 

2

 

  and  R

 

3

 

are zero valued.  For this case, Eqs. (34) through (37)
give

             (38)

 Ny = Nx

a16a26 – a12 a66 + C3

a22 + C2 a66 + C3 – a26
2

 Nxy = Nx

a12a26 – a16 a22 + C2

a22 + C2 a66 + C3 – a26
2

 Ny = Nx

a16a26 – a12a66 1 + R3

a22a66 1 + R2 1 + R3 – a26
2

 Nxy = Nx

a12a26 – a16a22 1 + R2

a22a66 1 + R2 1 + R3 – a26
2

 Nx1
c

 Ny1 = Nx1
c a16a26 – a12a66 1 + R3

a22a66 1 + R2 1 + R3 – a26
2

 Nxy1 = – Nx1
c a12a26 – a16a22 1 + R2

a22a66 1 + R2 1 + R3 – a26
2

  
Ny1 = Nx1

c
1 + R3 ν yx + η xy,yη x,xy

1 + R2 1 + R3 – η xy,yη y,xy

  
Nxy1 = Nx1

c
1 + R2 η x,xy + ν yxη y,xy

1 + R2 1 + R3 – η xy,yη y,xy

 Nx1
c > 0

  Ny1

Nx1
c =

A 12

A 11
=

ν yx + η xy,yη x,xy
1 – η xy,yη y,xy
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and

       (39)

where  A

 

11

 

, A

 

12

 

, and  A

 

16

 

  are membrane stiffnesses of 
classical laminated-plate theory.  Second, when a plate 
is elastically restrained against lateral expansion or con-
traction and unrestrained against inplane shearing de-
formations such that N

 

xy1

 

 = 0, the compliance ratio  R

 

3

 

 

 

→

 

 

 

∞

 

.  This value for R

 

3

 

 means that the restraining me-
dium is much more compliant in shear than the plate.  
For this case, Eqs. (34) through (37) give  N

 

xy1

 

 = 0  and

                         (40)

where

         (41)

Equation (40) agrees with the result given in Ref. 7 for
the even simpler case when R

 

2

 

 = 0. Third, when a plate
is elastically restrained against inplane shearing defor-
mations and unrestrained against lateral expansion or
contraction such that N

 

y1

 

 = 0, the compliance ratio  R

 

2

 

→

 

 

 

∞

 

.  This value for R

 

2

 

 means that the restraining
medium is much more compliant in lateral expansion
than the plate.  For this case, Eqs. (34) through (37) give
N

 

y1

 

 = 0  and

                       (42)

where

         (43)

Equations (34) through (37) define a combined
loading state that is induced by elastically restraining the
inplane lateral and shearing deformations of a plate.   The
buckling problem is posed by determining the load fac-
tors  L

 

2

 

  and  L

 

3

 

  that appear in Eqs. (15) and (16).  For an

applied compression load  , the load factor  L

 

1

 

 = 1  by
definition.  The values for the other two load factors that
are needed to completely define the prebuckling stress
state in the nondimensional buckling analysis are ob-
tained by dividing Eqs. (15) and (16) by Eq. (14), with L

 

1

 

= 1, and by using Eqs. (10) - (12). This step yields

  (44)

   (45)

For balanced laminates, a

 

16

 

 = a

 

26

 

 = 0, Eq. (45) gives  L

 

3

 

 =
0, and Eq. (44) becomes

    (46)

where .  For an isotropic plate, Eq. (46) re-

duces to

                       (47)

where  

 

ν

 

  is Poisson’s ratio of a homogeneous, isotropic
material.  With  L

 

1

 

 = 1 and  L

 

2

 

 and  L

 

3

 

  defined by Eqs.
(44) and (45), the critical value of the mechanical load-

ing parameter  can be calculated by using the nondi-

mensional buckling analysis.  Note that =

 for a given set of bending boundary

conditions (e.g., simply supported and clamped edges).  

Finally,  it is important to mention that the approach
used herein to define the prebuckling stress state also ap-
plies for a more sophisticated plate theory, like a first-or-
der transverse-shear deformation theory, because the
inplane stiffness and compliance coefficients are identi-
cal to those of classical laminated-plate theory.  For this

theory,  would depend also upon additional nondi-
mensional parameters that characterize the transverse-
shear flexibility.  Thus, the only difference in the results
for the two plate bending theories is the actual value of

 that is used in Eqs. (18)-(20), for a given problem.  It

is also important to point out that  for a long plate
does not depend on the buckle aspect  ratio parameter 

 

α

 

∞

 

.
This fact has been shown and discussed in Refs. 1-4.

  Nxy1

Nx1
c = –

A 16

A 11
=

η x,xy + ν yxη y,xy
1 – η xy,yη y,xy

  Ny1

Nx1
c =

ν yx
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a12
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A 11A 66 – A 16
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Nx1
c =
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1 + R3

  η x,xy =
a16
a66

=
A 12A 26 – A 16A 22

A 11A 22 – A 12
2

 Nx1
c

 L 2 =
Ny1

Nx1
c
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D22

1/2

=

 a16a26 – a12a66 1 + R3

a22a66 1 + R2 1 + R3 – a26
2

D11

D22

1/2

 L 3 =
Nxy1

Nx1
c

D11

D22

1/4

=

 
–

a12a26 – a16a22 1 + R2

a22a66 1 + R2 1 + R3 – a26
2

D11

D22

1/4

  L 2 =
Ny1

Nx1
c

D11

D22

1/2

=
ν yx

1 + R2

D11

D22

1/2

  ν yx =
A 12

A 11
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Nx1
c = ν
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Results for Selected Laminates

Results are presented in this section that illustrate
the behavioral trends for several selected symmetrically
laminated plates that are loaded by uniform axial com-
pression.  Nine different material systems are considered
that include boron-aluminum, S-glass-epoxy, a typical
boron-epoxy, AS4/3501-6 graphite-epoxy, AS4/3502
graphite-epoxy, IM7/5260 graphite-bismaleimide, Kev-
lar 49-epoxy, IM7/PETI-5, and P-100/3502 pitch-epoxy
materials (see Table 1). The plates are either rigidly re-
strained, elastically restrained against only lateral, in-
plane movement, elastically restrained against only
inplane shear deformation, or are elastically restrained
against both lateral inplane movement and inplane shear-
ing deformations. First, results are presented in Table 2
and Figs. 3-10 for several balanced, symmetric laminates
that exhibit relatively small degrees of flexural anisotro-
py; that is, [(±45/0

 

2

 

)

 

m

 

]

 

s

 

 axially stiff laminates, [(±45/
90

 

2

 

)

 

m

 

]

 

s

 

 laterally stiff laminates, [(±45/0/90)

 

m

 

]

 

s

 

 quasi-iso-
tropic laminates, and [(±θ)m]s angle-ply laminates.  Then,
results are presented for [(+452/02)m]s, [(+452/902)m]s, and
[(+452/0/90)m]s unbalanced laminates in Tables 3-4 and
Figs. 11-21 that exhibit significant degrees of membrane
and flexural anisotropies. In addition, results are present-
ed in Figs. 22-26 for [+θ3/15]s unbalanced laminates that
exhibit a wide range of values for the overall laminate
Poisson’s ratio, including negative values. All the results
are based on classical laminated-plate theory and the
nominal ply thickness used in the calculations was 0.005
in.

Results for Balanced Laminates

For balanced laminates, there are no inplane shear-
ing deformations because  A16 = A26 = a16 = a26 = 0, and
as a result, the compliance ratio R3 is immaterial and the
induced shearing stress resultant Nxy1 is zero valued.
With the use of Eq. (41), Eq. (36) simplifies to 

                 (48)

where  0 ≤ R2 < ∞.  Thus, graphs or tables of  νyx  for
balanced, symmetric laminates yield the induced lateral
stress resultant Ny1 for an infinite number of different
compliance ratios.  

Results are presented in Table 2 that show the load

ratio , or equivalently, νyx  for [(±45/02)m]s,

[(±45/902)m]s, and [(±45/0/90)m]s laminates made from
one of the nine different material systems given in Table
1.  The results are independent of the number of laminate

plies and indicate that the laterally stiff [(±45/902)m]s

laminates exhibit the largest values of  νyx  for a given
material system; the smallest values are exhibited by the
axially stiff [(±45/02)m]s laminates.  Moreover, for the
[(±45/902)m]s and [(±45/02)m]s laminates, the largest val-
ue of  νyx  is obtained for the P-100/3502 pitch-epoxy and
the boron-aluminum materials, respectively.  For the
[(±45/0/90)m]s quasi-isotropic laminates, the largest val-
ue of  νyx  is obtained for the Kevlar 49-epoxy material.
For all the laminates and material systems,

 for all allowable values of the compliance
ratio R2 and the laminates experience a state of uniform
biaxial compression prior to buckling.  

Nondimensional buckling loads are shown in Fig. 3
as a function of the number of laminate plies for the axi-
ally stiff [(±45/02)m]s laminates made of the IM7/5260
material.  The nondimensional buckling load is given by

                                (49)

where  is defined in terms of the lamina material 
properties (see Table 1) and plate thickness  h  by

                       (50)

This bending stiffness is used herein to permit the buck-
ling performance of laminates that are made of the same
material, but with different ply orientations, to be com-
pared directly.  Two groups of curves are shown in the
figure; the dashed and solid curves correspond to results
for clamped and simply supported plates, respectively.
Four curves appear within each group that correspond to
values of the compliance ratio given by  R2 = 0 (rigidly
restrained), 0.1, 0.5, and ∞.  The results for  R2 = ∞  cor-
respond to an unrestrained plate for which  Ny1 = Nxy1 =
0. 

The results in Fig. 3 show a monotonic reduction in
the nondimensional buckling load as the number of plies

(8m) increases.  However, because  increases with the
cube of the plate thickness h, the actual buckling load in-
creases by the factor m3 as the number of plies increases.
The results in Fig. 3 also show a reduction in the buck-
ling load as the compliance ratio decreases, for both sim-
ply supported and clamped plates, as expected.
Specifically, the unrestrained plates, that experience
uniaxial compression, exhibit the highest buckling loads
and the corresponding rigidly restrained plates, that ex-
perience biaxial compression, exhibit the lowest buck-
ling loads.

The corresponding buckling interaction curves for

  1 + R2

Ny1

Nx1
c = ν yx =

A 12

A 11

 1 + R2

Ny1

Nx1
c

 0 < Ny1 < Nx1
c

  Nx1
c

cr
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D
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the axially stiff [(±45/02)m]s laminates of Fig. 3 with  m
=1 (8 plies)  and  m = 6 (48 plies)  are shown in Fig. 4.
The dashed and solid curves correspond to results for
clamped and simply supported plates, respectively.  In
addition, the horizontal, flat portions of the curves corre-
spond to wide-column buckling modes for infinitely long
plates.  Points on the curves that correspond to values of
R2 = 0 (rigidly restrained), 0.1, 0.5, 1, 10, and ∞ (unre-
strained) are indicated by six different symbols.  These
points are located by noting that the slope of a line that
emanates from the origin in the figure, is given by

                            (51)

For these axially stiff laminates, νyx  = 0. 193. Addition-
ally, the 8-ply plates have a much higher degree of flex-
ural anisotropy (γ = 0.18, δ = 0.21) than the 48-ply
plates (γ = 0.01, δ = 0.02).  These results indicate that
the rigidly restrained plates (R2 = 0) experience the larg-
est amount of transverse compression, as expected.

Buckling interaction curves for [(±45/02)2]s, [(±45/
902)2]s, and [(±45/0/90)2]s 16-ply laminates made of the
IM7/5260 material are presented in Fig. 5 for simply sup-
ported (solid lines) and clamped (dashed lines) boundary
conditions.  Points on the curves for values of  R2 = 0
(rigidly restrained), 0.1, 0.5, 1, 10, and ∞ (unrestrained)
are also indicated by six different symbols.  These points
are also located by noting that the slope of a line that em-
anates from the origin in the figure, is given by Eq. (51).
Values of νyx  for these laminates, to be used with Eq.
(51), are given in Table 2.  Like for Fig. 4, the horizontal,
flat portions of the curves correspond to wide-column
buckling modes.

The results in Fig. 5 show the basic effects of ply
orientation on the buckling resistance of the 16-ply lam-
inates, as the laminate configuration changes from axial-
ly stiff to quasi-isotropic to transversely stiff.  In general,
the transversely stiff [(±45/902)2]s, plate exhibits the
greatest buckling resistance for states of biaxial com-
pression. In contrast, the axially stiff [(±45/02)2]s plate
exhibits the lowest buckling resistance for states of biax-
ial compression.  For a state of uniaxial compression, the
quasi-isotropic laminate exhibits the greatest buckling
resistance. For all cases, the clamped plates are more
buckling resistant than the simply supported plates, as
expected.  Moreover, the simply supported plates exhibit
wide-column modes for the smaller values of the compli-
ance ratio R2 designated by the symbols, whereas none of
the clamped plates exhibit wide-column modes.

A comparison of the structural efficiency of 16-ply
[(±45/0/90)2]s quasi-isotropic plates with simply sup-

ported edges is presented in Fig. 6.  Each curve in this
figure corresponds to one of the nine material systems
defined in Table 1.  A thick, solid gray curve is also
shown for plates made of aluminum with an elastic mod-
ulus E = 106 psi, a Poisson’s ratio ν = 0.33, and a density
ρAl = 0.1 lb/in3.  In this figure, the buckling loads are nor-
malized by the bending stiffness DAl, which is obtained
by substituting the properties for the aluminum material
into Eq. (50).  Moreover, the nondimensional buckling
loads are weighted by the density ratio ρAl/ρ, where ρ is
the density of the material (see Table 1) that corresponds
to a given curve in the figure.  Thus, plates with higher
buckling resistance per unit mass are represented by
curves that are farther from the origin of the graph.  Also,
points on the curves that correspond to values of  R2 = 0
(rigidly restrained), 0.1, 0.5, 1, 10, and ∞ (unrestrained)
are indicated by symbols.

The results in Fig. 6 show that all the materials out
perform the aluminum material except the Kevlar 49-ep-
oxy and S-glass-epoxy materials. The best performance
is exhibited by the P-100/3502 pitch-epoxy material, fol-
lowed by the boron-aluminum material.  The worst per-
formance is exhibited by the S-glass-epoxy material,
followed by the Kevlar 49-epoxy material. The symbols
shown in the figure indicate a very pronounced effect of
lateral edge restraint, which varies somewhat with mate-
rial system.

Results are presented in Fig. 7 for [(±θ)m]s bal-
anced, angle-ply laminates that dramatize the effects of
fiber orientation and material system on the induced lat-
eral load Ny1.  Each curve in this figure also corresponds
to one of the nine material systems defined in Table 1,
and is independent of the number of laminate plies.
Moreover, the results are applicable to an infinite range
of compliance ratios given by  0 ≤ R2 < ∞.  The results in
Fig. 7 show the largest variation in the load ratio

in the approximate range of  50 deg < θ < 80

deg.  The greatest variations in the load ratio are exhibit-
ed by the laminates made of the P-100/3502 pitch-epoxy
material, followed by those made of the IM7/PETI-5 ma-
terial.  In contrast, the smallest variations are exhibited
by the laminates made of the boron-aluminum material,
followed by those made of the S-glass-epoxy material.  It
is important to note that the induced lateral load for many
of the laminate configurations exceeds the magnitude of
the applied load; the largest being about 3.3 times the ap-
plied load.

The effects of fiber orientation and lateral edge re-
straint on the buckling resistance of 4-ply, highly aniso-
tropic [±θ]s laminates made of the IM7/5260 material
given in Table 1 are shown in Fig. 8.  In particular, the
nondimensional buckling load defined by Eq. (49) is giv-

  Ny1

Nx1
c =

ν yx

1 + R2

 Ny1/Nx1
c
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en as a function of the fiber angle θ.  Two groups of
curves are shown in the figure.  The dashed and solid
curves correspond to results for clamped and simply sup-
ported plates, respectively.  In addition, four curves ap-
pear within each group that correspond to values of the
compliance ratio given by  R2 = 0 (rigidly restrained),
0.1, 0.5, and ∞ (unrestrained, Ny1 = Nxy1 = 0). 

The results in Fig.  8 show a big effect of fiber ori-
entation and lateral edge restraint.  Unlike the corre-
sponding results for the load ratio shown in Fig. 7, the
largest variation in buckling load is in the approximate
range of  25 deg < θ < 70 deg.  Generally, the results in-
dicate that the clamped plates are more buckling resistant
than the simply supported plates, as expected, but for
several values of θ, the unrestrained, simply supported
plates are more buckling resistant than the corresponding
clamped plates with R2 = 0 (rigidly restrained) and R2 =
0.1.  This somewhat surprising result illustrate a detri-
mental effect of the biaxial compression state that is in-
duced by severely restraining the lateral movement of the
clamped-plate edges.  Thus, neglecting the effects of in-
plane restraint in a preliminary-design buckling analysis
could lead to an erroneous representation of the true re-
sponse and negative margins of safety.

The results in Fig. 8 also show significant differ-
ences in the shapes of the curves for the corresponding
clamped and simply supported plates with  R2 = 0, 0.1,
and 0.5 and in the range of approximately 25 deg < θ <
65 deg.  Insight into these differences is obtained by ex-
amining the correponding buckling interaction curves
that are presented in Figs. 9 and 10 for the simply sup-
ported and clamped [±θ]s laminates, respectively, made
of the IM7/5260 material.  Five curves are shown in Fig.
9, and in Fig. 10, that correspond to values of  θ = 15, 30,
45, 60, and 75 deg.  Also, points on the curves that cor-
respond to values of  R2 = 0 (rigidly restrained), 0.1, 0.5,
1, 10, and ∞ (unrestrained) are indicated by six different
symbols.  Comparison of the symbols shown in Fig. 9 for
the simply supported plates indicate wide-column buck-
ling modes for values of  θ = 30, 45, and 60 deg. For the
remaining values of θ, the buckling modes are not wide-
column modes. In addition, none of the modes for the
clamped plates with the values of R2 indicated by the
symbols are wide-column modes.  Thus, the difference in
the shape of the curves in Fig. 8, for the clamped and
simply supported plates with lateral edge restraint, ap-
pear to be associated with the difference in mode shapes.

Results for Unbalanced Laminates

For unbalanced laminates, inplane shearing defor-
mations will develop under uniaxial compression load-
ing, unless rigidly restrained, because the shear-

extensional coupling coefficients are nonzero; that is, a16

≠ 0 and a26 ≠ 0 (see Eq. (25a).  The induced loads associ-
ated with restraining lateral movement and inplane
shearing deformations are given by Eqs. (34) and (35), or
by Eqs. (36) and (37).  Two special cases that will be ad-
dressed subsequently are the cases in which only the lat-
eral inplane movement of a plate is restrained (R3 → ∞)
and the case in which only the shear deformation of a
plate is restrained (R2 → ∞).  The induced loads for the
first case are defined by Eqs. (40) and (41), and those for
the second case are defined by Eqs. (42) and (43).

Results are presented in Table 3 that show the load

ratio  , or equivalently, νyx for [(+452/02)m]s,

[(+452/902)m]s, and [(+452/0/90)m]s unbalanced laminates
made from one of the nine different material systems
given in Table 1 and for the case in which only the lateral
inplane movement of a plate is restrained (R3 → ∞); that
is, inplane shear deformations are unrestrained and Nxy1

= 0.  The results are independent of the number of lami-
nate plies and indicate that the [(+452/902)m]s laminates
exhibit the largest values of  νyx  for a given material sys-
tem; the smallest values are exhibited by the [(+452/02)m]s

laminates.  Moreover, for the [(+452/902)m]s laminates,
the largest value of  νyx  is obtained for the Kevlar 49-ep-
oxy material.  For the [(+452/0/90)m]s and [(+452/02)m]s

laminates, the largest value of  νyx  is obtained for the bo-
ron-aluminum material. For all the laminates and materi-

al systems,  for all allowable values of the
compliance ratio R2 and the laminates experience a state
of uniform biaxial compression.  

Results are presented in Table 4 that show the load

ratio , or equivalently, ηx,xy for [(+452/

02)m]s, [(+452/902)m]s, and [(+452/0/90)m]s laminates made
from one of the nine different material systems and for
the case in which only the inplane shear deformation of
a plate is restrained (R2 → ∞); that is, inplane lateral
movements are unrestrained and Ny1 = 0.  These results,
all negative, are also independent of the number of lam-
inate plies and indicate that the [(+452/902)m]s laminates
exhibit the largest magnitudes of  ηx,xy  for a given mate-
rial system.  The smallest magnitudes of ηx,xy are exhib-
ited by the [(+452/02)m]s laminates.  Moreover, for the
[(+452/902)m]s and [(+452/0/90)m]s laminates, the largest
magnitude of  ηx,xy  is obtained for the P-100/3502 pitch-
epoxy material.  For the [(+452/02)m]s laminate, the larg-
est magnitude of  ηx,xy  is obtained for the S-glass-epoxy
material. For all the laminates and material systems, and
for all allowable values of the compliance ratio R3, the

 1 + R2

Ny1

Nx1
c

 0 < Ny1 < Nx1
c

 1 + R3

Nxy1

Nx1
c
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laminates experience a state of uniform axial compres-
sion and  negative shear (see Fig. 2b for the positive-
shear direction).  The presence of negative shear is ratio-
nalized by the fact that the 45-deg plies tend to rotate
counterclockwise in the x-y plane when the plates are
subjected to the uniaxial compression load and shear de-
formations are not restrained.  Thus, the restoring force
of the restraining medium must act to rotate these plies in
the opposite direction, which implies the presence of
negative shear stresses. Although not addressed specifi-
cally in the present study, the results in Table 4 indicate
the possibility of buckling under uniaxial tension loads
when only the inplane shear deformation of an unbal-
anced laminate are restrained.

Graphs of the load ratios  and 
are presented in Figs. 11 and 12, respectively, for [(+452/
02)m]s laminates made of the IM7/5260 material defined
in Table 1.  These results are independent of the number
of laminate plies and are given as a function of the com-
pliance ratio R2 by the black curves, for values of  R3 = 0
(rigidly restrained against inplane shear deformation),
0.1, 0.5, 1, 10, and ∞ (unrestrained against inplane shear
deformation).  The dashed gray curves in the figures cor-
respond to similar results in which the compliance ratios
are equal; that is, R2 = R3.  The circular symbol on the or-
dinate of the graphs correspond to results in which the
plates are rigidly restrained against all inplane move-
ment.

The results in Figs. 11 and 12 define a very broad
spectrum of combined biaxial compression and negative
shear loads that can result from restraining the inplane
expansion, contraction, and shear deformation of the
plates, for a very general variety of restraint combina-
tions.  For all restraint scenaros represented in the fig-
ures, the induced loads diminish as either of the restraint
conditions is relaxed.  Moreover, the magnitudes of the
induced loads never exceed 20% of the magnitude of the
applied axial compression for this family of laminates.

The effects of changing material system on the load

ratios  and  are presented in Figs. 13
and 14, respectively, for the [(+452/02)m]s laminates (m =
1, 2, ...).  In particular, curves that show the load ratios as
a function of the compliance ratio R are presented, where
R2 = R3 = R.  Values of  R = 0  and  R = ∞  correspond to
plates that are rigidly restrained and unrestained against
inplane deformation, respectively.  Each curve shown in
these two figures corresponds to one of the nine material
systems defined by Table 1.  Suprizingly, the results in
Fig. 13 show that the boron-aluminum and the P-100/
3502 pitch-epoxy materials exhibit the largest and small-

est values of  for the range of  R shown.  Also,

the magnitudes of  never exceed 25% of the

magnitude of the applied axial compression for these
laminates and tend to diminish rapidly with increasing
values of the compliance ratio R.  In contrast, the results
in Fig. 14 show that both the boron-aluminum and P-100/
3502 pitch-epoxy materials exhibit the smallest magni-

tudes of  for the range of  R shown.  The other
materials exhibit, for the most part, the larger, nearly
equal magnitudes of the induced negative-shear load.

The magnitudes of  never exceed 20% of the
magnitude of the applied axial compression for these
laminates and also tend to diminish rapidly with increas-
ing values of the compliance ratio R.

The effects of laminate stacking sequence and com-

pliance ratio R (R2 = R3 = R) on the load ratios 

and  are illustrated in Fig. 15 for the [(+452/
02)m]s, [(+452/902)m]s, and [(+452/0/90)m]s laminates made
of the IM7/5260 material.  The solid and dashed curves

correspond to results for  and , re-
spectively.  Moreover, the gray solid and dashed curves
correpond to results for the [(+452/0/90)m]s laminates.
Like the previous two figures, the results show a decline
in the magnitudes of the load ratio with increasing values
for the compliance ratio R.  The decline is the most pro-
nounced for the [(+452/902)m]s laminates and the least
pronounced for the [(+452/02)m]s laminates.  These results
also show that placing more laminate fibers perpendicu-
lar to the axis of the applied load dramatically amplifies
the magnitudes of the induced compression and shear
loads.  The largest magnitudes of the load ratios are on
the order of 60% to 70% of the applied load, for the rig-
idly restrained [(+452/902)m]s laminates.

Nondimensional buckling loads, defined by Eq.
(49), are shown in Fig. 16 as a function of the number of
laminate plies for the [(+452/902)m]s laminates made of
the IM7/5260 material.  Two groups of curves are shown
in the figure; the dashed and solid curves correspond to
results for clamped and simply supported plates, respec-
tively.  Four curves also appear within each group that
correspond to different values of the compliance ratio R,
where R2 = R3 = R.  Specifically, the values are R = 0
(rigidly restrained), 0.1, 0.5, and ∞.  The results for  R =
∞  correspond to an unrestrained plate for which  Ny1 =
Nxy1 = 0. 

Unlike the results shown in Fig. 3 for the [(±45/
02)m]s balanced laminates (note that R3 = 0 and R2 = R for
the balanced laminates), the results in Fig. 16 for the
[(+452/902)m]s unbalanced laminates show a monotonic
increase in the nondimensional (and actual) buckling
load as the number of plies increases, and show a rever-
sal in the response trend for the clamped plates with  R =
∞.  Specifically, the unrestrained clamped plates exhibit
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lower buckling loads than the restrained clamped plates,
which at first glance appears to be counterintuitive. The
results for the clamped plates with the other values for  R,
and all the results for the simply supported plates show a
reduction in the buckling load as the compliance ratio de-
creases, which agrees with the trend exhibited by the
[(±45/02)m]s balanced laminates (Fig. 3).  However, it is
important to note that the unbalanced laminates have a
relatively high degree of  flexural  anisotropy which can
greatly affect the manner in which combined loads inter-
act (e.g., see Ref. 3).

Insight into the combined-load interactions experi-
enced by the [(+452/902)m]s unbalanced laminates (Fig.
16) can be obtained by examining the buckling interac-
tion curves and surfaces for a general state of biaxial
compression and shear.  Toward this goal, buckling in-
teraction curves for 16-ply [(+452/902)2]s laminates made
of the IM7/5260 material are shown in Figs. 17 and 18.

In Fig. 17, Ny1 versus  buckling interaction curves
are presented, where the gray and black curves corre-
spond to results for clamped and simply supported
plates, respectively.  Moreover, the dashed and solid
curves correspond to results for negative and nonnega-
tive shear loads, respectively.  Furthermore, the horizon-
tal, flat portions of the curves correspond to wide-
column buckling modes for infinitely long plates.  In Fig.

18, the companion Nxy1 versus  buckling interaction
curves are presented, but only for the simply supported
plates.  Points on the curves of both figures that corre-
spond to several selected values of the compliance ratios
R2 and R3 are also shown by ten different symbols, and
include the cases shown in Fig. 16.  The values for both
R2 and R3 shown in Fig. 17 and 18 include 0 (rigidly re-
strained), 0.1, 0.5, 1, 2, 5, 10, and ∞ (unrestrained).  The
points in Figs. 17 and 18 are located by noting that the
slope of a line that emanates from the origin in the fig-

ures, is given by  and , respectively.

It is important to point out that the buckling inter-
action curves in Figs. 17 and 18 are not level curves of
the corresponding buckling interaction surfaces; that is,
they are not the curves formed by the intersection of a
plane that is parallel to one of the coordinate planes with
the surface. To illustrate this point, consider the buckling
interaction surfaces depicted in Figs. 19 and  20.  The
level curves that correspond to constant values of Ny1 are

parabola-like curves that relate  and Nxy1.  These pa-
rabola-like curves are not symmetric about the plane
Nxy1 = 0  because the relatively high degree of flexural
anisotropy  (γ = 0.56, δ = 0.37) exhibited by the 16-ply
[(+452/902)2]s laminates.  The top-most level curve en-
closes the region of the buckling interaction surface that

corresponds to wide-column modes.  The level curves
that correspond to constant values of Nxy1, are similar in
shape to the curves shown in Fig. 17, but have different
proportions.  The curves shown in Fig. 17 are obtained
by first defining the plane given by a specific value for

 and then determining the curve C  in Fig. 19
that is the intersection of that given plane with the buck-
ling interaction surface.  Then, the curve C  is projected

onto the  plane (dashed curve) to obtain a
buckling interaction curve like those presented in Fig.
17.

The buckling interaction curves in Fig. 18 are ob-
tained by first defining the plane given by a specific val-

ue for  and then determining the curve C  in Fig.
20, that is the intersection of that given plane with the
buckling interaction surface.  Then, the curve C  is pro-

jected onto the  plane (dashed curve) to obtain
a buckling interaction curve like those presented in Fig.

18.  Note, that as the value for  increases, even-
tually the plane will intersect the plane of wide-column
buckling modes and yield a buckling interaction curve
with a flat section like those shown in Fig. 18 for

= 0.6 and 0.8.

The results in Fig. 17 indicate that curves for the
simply supported plates have much smaller slopes than
the corresponding curves for the clamped plates, that is
caused to a large extent by the higher wide-column buck-
ling resistance of the clamped plates.  Moreover, there is
more distance separating the curves for the clamped
plates than for the simply supported plates. Thus, for a

given value of , the corresponding line emanat-
ing from the origin intersects the buckling interaction
curves for the simply supported plate in a region with a
much different geometrical character than the corre-
sponding region for the clamped plates.  This difference
in geometrical character accounts for the fact that

 for the rigidly restrained plate (R2 = R3 = R = 0 )

is less than   for the corresponding unrestrained
plate (R2 = R3 = R = ∞) when the edges are simply sup-
ported, and that this relationship reverses when the edges
are clamped.

Figure 18 gives a clear indication of how the flex-
ural anisotropy interacts with the combined loads to
change the geometrical character of the buckling interac-
tion surface.  In particular, a basic effect of the flexural

anisotropy, as exhibited by the curve for = 0, is
the lack of symmetry about the plane  Nxy1 = 0.  In fact,
the corresponding curve in which the flexural anisotropy
is neglected is obtained by translating this curve vertical-
ly until it is symmetric about the plane  Nxy1 = 0.  As the

 Nx1
c
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c

 Ny1/Nx1
c

 Nxy1/Nx1
c
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c
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c
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c
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value for  increases, the curves in Fig. 18 skew
vertically towards the plane Nxy1 = 0, which suggests that
the importance of the flexural anisotropy is being miti-
gated, at least somewhat, by the increase in the lateral
compression load.

The effects of laminate stacking sequence and com-
pliance ratio R (R2 = R3 = R) on the nondimensional
buckling load are illustrated in Fig. 21 by results for the
[(+452/02)m]s, [(+452/902)m]s, and [(+452/0/90)m]s lami-
nates made of the IM7/5260 material.  The solid black,
solid gray, and dashed black curves correspond to results
for the [(+452/902)m]s, [(+452/02)m]s, and [(+452/0/90)m]s

laminates, respectively.  Two curves are given for each
laminate that correspond to rigidly restrained (R = 0) and
unrestrained (R = ∞) edges.   These results show a mono-
tonic increase in the nondimensional buckling load with
an increase in the number of plies, except for the rigidly
restrained [(+452/02)m]s laminate.  In addition, the greater
buckling resistance is generally exhibited by the unre-
strained [(+452/0/90)m]s laminates and the least by the
rigidly restrained [(+452/902)m]s laminates.  Moreover,
the greatest influence of the compliance ratio, as evi-
denced by the separation in the two curves for each lam-
inate, is exhibited by the [(+452/902)m]s laminates.

 As mentioned previously, [+θ3/15]s unbalanced
laminates exhibit a wide range of values for the overall
laminate Poisson’s ratio νyx that includes negative val-
ues.  This characteristic is illustrated in Fig. 22 for the
nine material systems given in Table 1.  These results in-
dicate positive values of  νyx  for all the laminate config-
urations made of the boron-aluminum and S-glass-epoxy
materials.  For the laminate configurations with negative
values of  νyx, the magnitudes appear to be the largest in
the region defined approximately by  60 deg < θ < 90
deg.  The negative values with the largest magnitudes are
generally exhibited by the laminates made of the P-100/
3502 pitch-epoxy material, followed by those made of
the IM7/PETI-5 material.  When applying these results
to the case in which only the lateral inplane movement of
a plate is restrained (R3 → ∞, Nxy1 = 0), defined by Eqs.
(40) and (41), it is seen that a lateral tension load (Ny1 <
0) exists when νyx < 0, and that values of θ exist for sev-
eral of the material systems where  νyx is near zero and
Ny1 is negligible.

The load ratios  and  are pre-
sented in Figs. 23 and 24 for rigidly restrained [+θ3/15]s

plates (R2 = R3 = 0) made from the nine material systems
considered herein. For this case, the induced loads are
given by Eqs. (38) and (39).  These results indicate pos-

itive values for  over the range of fiber orienta-
tions considered, and indicate negative values for

.  The most and least pronounced variations in
the load factors are exhibited by the laminates made of
the P-100/3502 pitch-epoxy and the boron-aluminum
materials, respectively.  The largest magnitudes of

 appear to be in the region defined approximate-

ly by  45 deg < θ < 60 deg.  Similarly, the largest magni-

tudes of  appear to be in the region defined
approximately by  40 deg < θ < 60 deg.  Altogether, the
magnitudes of the load factors never exceed 60% of the
applied axial load, for this family of laminates. When

compared to the results in Fig. 22, that define 
for the case in which inplane shear deformation is unre-
strained, the results in Figs. 23 and 24 illustrate very pro-
nounced effects caused by restraining the inplane
shearing deformations.

Two groups of curves are presented in Fig. 25 that
show the effects of the compliance ratio R, where R2 = R3

= R, on the load ratios  and  for [+θ3/
15]s plates made of the IM7/5260 material.  The black
and gray curves in the figure correspond to results for

 and , respectively.  Moreover, each
group has three curves that correspond to values of  R =
0 (rigidly restrained), 0.05, and 0.1.  The results in this
figure show sizeable reductions in the induced loads for
relatively small increases in the compliance ratio, with
the greater reductions exhibited for the lateral load Ny1.
The results also show a slightly greater sensitivity to an
increase in R for the induced lateral load than for the in-
duce shear load, as evidenced by the difference in sepa-
ration of the curves within each group.  Moreover, the
values of the fiber angle θ that corresponds to the maxi-

mum values of  and  decrease slightly
with increase in the compliance ratios.  Overall, the mag-
nitudes of the load factors never exceed 51% of the ap-
plied axial load.

Nondimensional buckling loads, defined by Eq.
(49), are shown in Fig. 26 as a function of the fiber angle
θ  for the [+θ3/15]s laminates made of the IM7/5260 ma-
terial.  Two groups of curves are shown in the figure; the
dashed and solid curves correspond to results for
clamped and simply supported plates, respectively.  Four
curves also appear within each group that correspond to
different values of the compliance ratio R, where R2 = R3

= R.  Specifically, the values are R = 0 (rigidly re-
strained), 0.1, 0.5, and ∞ (unrestrained, Ny1 = Nxy1 = 0).

The results in Fig. 26 show that the influence of the
compliance ratio R varies significantly with the fiber an-
gle θ, and that the simply supported plates generally
show a greater sensitivity to variations in R than do the
clamped plates.  Similarly, the simply supported plates
exhibit much larger variations in the shape of the re-
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sponse curves, with variations in θ, than do the clamped
plates.  Altogether, the results in Fig. 26 illustrate how
the combined biaxial compression and shear loads that
are present in the unbalanced laminates, restrained
against inplane deformations, can produce counterintui-
tive response trends.  For example, the results show that
the unrestrained plates, that experience only uniaxial
load, are less buckling resistant than the restrained plates
in many cases.  In fact, the restrained clamped plates are
more buckling resistant than the unrestrained clamped
plate for most of the values of the fiber angle θ.  Based
on results presented previously herein, this seemingly
unusual behavior is likely an artifice of the geometrical
character of the corresponding buckling interaction sur-
faces, which is influenced to a large extent by flexural
anisotropy.

Generic Results and Example

In developing buckling-design technology for lam-
inated composite structures, it desirable to produce data
and charts that have a broad range of applicability. This
goal was accomplished in the present study by develop-
ing data for the elastically restrained, compression-load-
ed plates considered herein that can be used with the
generic buckling-design charts presented in Refs. 1-3
and 18.  In particular, the nondimensional buckling anal-
ysis described herein is formulated such that the buckling
coefficient Kx (see Eq. (18)), associated with the uniaxial
compression load, is given in terms of the nondimension-
al orthotropy parameter β, the anisotropy parameters γ
and δ, and the loading parameters L2 and L3 by

                   (52)

for a given set of bending boundary conditions (e.g.,
simply supported and clamped edges).  Examples of
generic buckling-design charts like those presented in
Refs. 1-3 and 18, and based on Eq. (52), are shown in
Figs. 27 and 28.  These figures give the buckling coeffi-
cient Kx as a function of the nondimensional loading
parameter L2, for selected values of the parameters β
and L3, and for γ = δ = 0.4.  The curves given by

 represent the wide-column buckling modes.

Several similar figures are presented in Ref. 18 that are
applicable to a wide range of laminate constructions and
combined loading conditions.  In addition, a large num-
ber of results that show the orthotropy parameter β and
the anisotropy parameters γ and δ  as a function of lami-
nate construction are also found in Refs. 1-3 and 18.  A
sample of these results in shown in Fig. 29, which gives
the anisotropy parameter γ as function of the fiber angle

θ, and the nine material systems given in Table 1, for
[+θ]m unidirectional off-axis laminates.  

To make use of generic results like those shown in
Figs. 27-29, and to demonstrate the development of de-
sign data for the problem considered in the present study,
the nondimensional load factors L2 and L3 were deter-
mined for the [+θ]m unidirectional off-axis laminates of
Fig. 29.  These results are shown in Figs. 30-33 for the
nine material systems considered herein and are based on
Eqs. (44) and (45).  Moreover, the results given are for
the special case in which the compliance ratios R2 = R3 =
R.  For this simplification, Eqs. (44) and (45) reduce to

  (53)

 (54)

The results in Figs. 30 and 31 show the load factors
L2 and -L3 for plates that are rigidly restrained against all
inplane movement (R = 0).  The negative of L3 is used for
the ordinate in Fig. 31 because the induced shear loads
are negative for these laminates.  The results show large
variations in the load factors with the fiber angle θ  and
with material system.  The largest variations are exhibit-
ed by the P-100/3502 pitch-epoxy material and the
smallest by the boron-aluminum material.  In addition,
the curves shown in Fig. 30 for L2 exhibit symmetry
about the line θ = 45 deg, whereas the curves shown in
Fig. 31 for L3 are asymmetric and generally exhibit max-
imums at different values of θ.

The load factors L2 and -L3 for the [+θ]m unidirec-
tional off-axis laminates are shown in Figs. 32 and 33 for
values of the compliance ratios given by R = 0.1.  This
value for R means that the restraining medium has lateral
and shear stiffnesses that are ten times the corresponding
values for the plate.  Comparing Figs. 30 with 32 and Fig.
31 with 33, indicates that slightly relaxing the restraint of
inplane deformations has a pronounced effect on the load
factors L2 and L3.  Specifically, the amplitudes of the
curves are reduced substantially, the symmetry in the L2-
curves for R = 0 disappears, and the asymmetry in L3-
curves becomes more pronounced.

Example

To illustrate the use of the generic figures that have
been presented herein and in Refs. 1-3 and 18, consider
a fully restrained (R = 0), simply supported [+45]10 uni-
directional, off-axis laminate made of the S-glass-epoxy
material given in Table 1.  From  Fig. 25 in Ref. 17, one
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gets  β = 1.8.  Similarly, from Fig. 29 herein and from
Fig. 20 in Ref. 18, one gets γ = δ ≈ 0.4.  From Figs. 30
and 31, one gets L2 ≈ 0.5  and L3 ≈ -0.4, respectively.
Thus, the destabilizing loads are biaxial compression and
negative shear loads. The value of Kx is obtained from
Figs. 27 and 28 by interpolating the results in the figures
for  β = 1.5 and β = 2, and for L3 = 0 and L3 = -0.5.  For
β = 1.5, L2 = 0.5, and L3 = 0, Fig. 27 gives Kx = 2.0, which
corresponds to a wide-column buckling mode.  Similar-
ly, for  β = 1.5, L2 = 0.5, and L3 = -0.5, Fig. 27 also gives
Kx = 2.0.  Therefore, Kx = 2.0 for β = 1.5 and L3 = -0.4.
Next, for β = 2, L2 = 0.5, and L3 = 0, Fig. 28 also gives
Kx = 2.0 and a wide-column buckling mode. For β = 2,
L2 = 0.5, and L3 = -0.5, Fig. 28 once again gives Kx = 2.0
and a wide-column buckling mode. From these last two
results, it follows that Kx = 2.0 for β = 2 and L3 = -0.4.
Finally, because Kx = 2.0 for β = 1.5 and L3 = -0.4, and
for β = 2 and L3 = -0.4, it follows that Kx = 2.0 for β = 1.8
and L3 = -0.4.   Figure 29 in Ref. 17 indicates that Kx ≈
4.5 for the corresponding unrestrained plate.

Concluding Remarks

An analytical approach for synthesizing buckling
results and behavior for long, balanced and unbalanced
symmetric laminates that are subjected to uniform axial
compression and elastically restrained against inplane
expansion or contraction and inplane shearing deforma-
tions has been presented.  A nondimensional buckling
analysis for long flexurally anisotropic plates that are
subjected to combined loads has been described and use-
ful nondimensional parameters have been presented.  In
particular, nondimensional parameters have been pre-
sented that represent the kinematically induced lateral
and shear loads prior to buckling and that can be used to
determine critical buckling loads for a wide range of
laminate constructions.  Moreover, the effects of mem-
brane orthotropy and membrane anisotropy on the preb-
uckling stress state that is induced by restraining the
inplane movement of a plate have been presented.  

A large number of results have been presented
herein for several selected laminates that are intended to
highlight certain aspects of the behavioral trends and, to
some extent, to facilitate a structural designer’s transition
to the use of the generic buckling design curves that are
included in the paper.  Additionally, several results have
been presented that show the effects of laminate con-
struction on the nature of the induced loads and the re-
sulting buckling behavior.  Results of this type could be
important in the design of vehicles that must exploit plate
anisotropy to achieve certain high-performance goals.
Examples of generic buckling design curves have also
been presented that provide physical insight into the

buckling problem of the present paper in addition to pro-
viding useful design data.  In addition, an example has
been presented that demonstrates the use of the generic
design curves.  Overall, the analysis approach and results
that have been presented identify the effects or character-
istics of laminate membrane orthotropy and anisotropy,
elastic inplane edge-movement restraint, and flexural
orthotropy and anisotropy on laminated-plate buckling
in a very general manner.  Some seemingly counterintu-
itive response trends have been identified and explained
by examining the geometrical character of buckling in-
teraction surfaces for combined  biaxial compression and
shear loads.  Moreover, the results have shown clearly
that neglecting loads that are induced in compression-
loaded plates by restraining the inplane movement of the
unloaded edges may lead to very nonconservative repre-
sentations of the true buckling resistance, particularly for
laminates that exhibit shear-extensional coupling.  Al-
though the results are based on classical laminated-plate
theory and have been demonstrated for infinitely long
plates, the approach is applicable to more sophisticated
plate theories that incorporate effects such as transverse-
shear flexibility.  Many of the results can also be used in
the analysis of finite-length plates.
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Table 1.  Lamina Properties

* The symbols  L and T denote the longitudinal fiber and transverse matrix directions of a specially orthotropic lamina, respectively.

Lamina 
property*

Material Systems

Boron
-Al

S-glass-
epoxy

Kevlar 49-
epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

EL, Msi 33 7.5 11.02 22.1 18.5 20.01 29.58 20.35 53.5

ET, Msi 21 1.7 0.8 1.457 1.64 1.30 2.68 1.16 0.73

νLT 0.23 0.25 0.34 0.258 0.30 0.30 0.23 0.29 0.31

GLT, Msi 7.0 0.80 0.33 0.860 0.87 1.03 0.81 0.61 0.76

ρ, lb/in3 0.098 0.072 0.050 0.056 0.059 0.056 0.075 0.058 0.062
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Table 2.  Load ratio   for [(±45/0/90)m]s ,  [(±45/02)m]s, and [(±45/902)m]s laminates (m =1, 2, ...).

Table 3.  Load ratio   for [(+452/0/90)m]s ,  [(+452/02)m]s, and [(+452/902)m]s laminates (R3 → ∞, m  = 1, 2, ...).

Material Systems

[(±45/0/90)m]s [(±45/02)m]s [(±45/902)m]s

IM7/5260 0.299 0.193 0.667

Boron-Al 0.281 0.251 0.320

S-glass-epoxy 0.272 0.199 0.430

Kevlar 49-epoxy 0.325 0.210 0.720

AS4/3502 0.303 0.199 0.631

AS4/3501-6 0.284 0.184 0.623

Boron-epoxy 0.323 0.211 0.690

IM7/PETI-5 0.312 0.199 0.721

P-100/3502 0.316 0.193 0.867

Material Systems

[(+452/0/90)m]s [(+452/02)m]s [(+452/902)m]s

IM7/5260 0.105 0.062 0.355

Boron-Al 0.274 0.244 0.312

S-glass-epoxy 0.198 0.141 0.332

Kevlar 49-epoxy 0.133 0.078 0.448

AS4/3502 0.135 0.082 0.381

AS4/3501-6 0.098 0.058 0.311

Boron-epoxy 0.145 0.087 0.441

IM7/PETI-5 0.102 0.059 0.393

P-100/3502 0.030 0.016 0.304

 1 + R2

Ny1

Nx1
c

  1 + R2

Ny1

Nx1
c = ν yx

 1 + R2

Ny1

Nx1
c

  1 + R2
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Table 4.  Load ratio   for [(+452/0/90)m]s ,  [(+452/02)m]s, and [(+452/902)m]s laminates (R2 → ∞, m =1, 2, ...).

Material Systems

[(+452/0/90)m]s [(+452/02)m]s [(+452/902)m]s

IM7/5260 -0.212 -0.068 -0.570

Boron-Al -0.047 -0.040 -0.056

S-glass-epoxy -0.144 -0.084 -0.254

Kevlar 49-epoxy -0.207 -0.059 -0.564

AS4/3502 -0.200 -0.072 -0.496

AS4/3501-6 -0.212 -0.075 -0.549

Boron-epoxy -0.201 -0.063 -0.524

IM7/PETI-5 -0.216 -0.059 -0.614

P-100/3502 -0.241 -0.031 -0.843

 1 + R3

Nxy1

Nx1
c

  1 + R3

Nxy1

Nx1
c = η x,xy

Fig. 1   Sign convention for positive-valued stress resultants.
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Fig. 10  Nondimensional buckling interaction curves for clamped [±θ]s balanced, angle-ply 
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Fig. 11  Effects of compliance ratios R2 and R3 on nondimensional load ratio Ny1/Nx1 for [(+452/02)m]s 
unbalanced laminates made of IM7/5260 material (m = 1, 2, ...).    
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Fig. 12  Effects of compliance ratios R2 and R3 on nondimensional load ratio Nxy1/Nx1 for [(+452/02)m]s 
unbalanced laminates made of IM7/5260 material (m = 1, 2, ...).    
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Fig. 13  Effects of compliance ratio R = R2 = R3 on nondimensional load ratio Ny1/Nx1 for [(+452/02)m]s 
unbalanced laminates made of IM7/5260 material (m = 1, 2, ...).    
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Fig. 14  Effects of compliance ratio R = R2 = R3 on nondimensional load ratio Nxy1/Nx1 for [(+452/02)m]s 
unbalanced laminates made of IM7/5260 material (m = 1, 2, ...).    
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Fig. 15  Effects of compliance ratio R on load ratios  Ny1/Nx1  and  Nxy1/Nx1 for [(+452/02)m]s, [(+452/902)m]s,
and [(+452/0/90)m]s  unbalanced laminates made of IM7/5260 material (m = 1, 2, ...).    
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Fig. 17  Nondimensional buckling interaction curves for simply supported and clamped [(+452/902)2]s  
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Fig. 18  Nondimensional buckling interaction curves for simply supported [(+452/902)2]s unbalanced laminates  
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Fig. 21  Effects of compliance ratio R on nondimensional buckling load for simply supported  [(+452/02)m]s, 
[(+452/902)m]s, and [(+452/0/90)m]s  unbalanced laminates made of IM7/5260 material (R2 = R3 = R).    
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Fig. 23  Effects of lamina material properties on load ratio  Ny1/Nx1  for [+θ3/15]s unbalanced laminates 
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Fig. 25  Effects of compliance ratio R on load ratios  Nxy1/Nx1  and  Nxy1/Nx1  for [+θ3/15]s unbalanced laminates 
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Fig. 27  Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, specially  
orthotropic plates (γ = δ = 0.4) subjected to axial compression, transverse tension or compression, and shear loads.
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Fig. 28  Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, specially  
orthotropic plates (γ = δ = 0.4) subjected to axial compression, transverse tension or compression, and shear loads.
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Fig. 29  Effects of lamina material properties on nondimensional flexural anisotropy parameter γ  for  [+θ]m   
unidirectional laminates (m = 1, 2, ...).
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Fig. 30  Effects of lamina material properties on load factor L2  for [+θ]m unidirectional laminates (R = 0). 
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Fig. 31  Effects of lamina material properties on load factor L3  for [+θ]m unidirectional laminates (R = 0). 
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Fig. 32  Effects of lamina material properties on load factor L2  for [+θ]m unidirectional laminates (R = 0.1). 
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Fig. 33  Effects of lamina material properties on load factor L3  for [+θ]m unidirectional laminates (R = 0.1). 
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